Pastics Pipe lnstitute Gas Pipeline Calculator

1. Introduction

The PPI Gas Pipeline Calculator was developed by the Energy Piping Systems Division for estimating parameters involved in gas flow in plastic pipe. Although this calculator was primarily developed for plastic pipe, it will work for any pipe as long as the correct pipe roughness and internal diameter are entered. This document describes how to use the calculator and explains the variables and equations behind the calculations. This document is broken up in to 5 sections:

- Section 1 is the introduction to the calculator
- Section 2 describes how to use the calculator. Screen shots of the calculator fields are shown and explained.
- Section 3 explains the parameters used in the gas calculator. Users should reference this section for explanation of the parameters used in this calculator.
- Section 4 shows the derivation of the General Flow Equation.
- Section 5 describes many methods for estimating the friction factor and lists reasons why the 5 methods used by this calculator were chosen.

2. Overview of the Calculator

The PPI Gas Pipeline Flow Calculator uses the General Flow Equation to solve for one of the five variables below after the user enters four of these variables and information about the gas mixture. Figure 2.1 shows a schematic of the 5 pipeline gas flow variables.

1. Gas Flow Rate, Q
2. Pipe Internal Diameter, D_{i}
3. Pipe Length, L
4. Inlet Pressure, P_{1}
5. Outlet Pressure, P_{2}

Figure 2.1 - Pipeline Variables
Results are calculated using 5 different methods of estimating frictional resistance so the user can get a feel for the variability in the results due to the friction factor. The General Flow Equation and the

Plastics Pipe lnstitute Gas Pipeline Calculator
5 different methods of estimating frictional resistance are shown on the Equations Tab (see Figure 2.2).

The PPI Gas Pipeline Flow Calculator uses the General Flow Equation -
$Q=\frac{C_{1}}{\sqrt{f}} *\left(\frac{T_{b}}{P_{b}}\right) *\left[\frac{\left(P_{1}^{2}-P_{2}^{2}-H_{c}\right)}{\left(S G * T_{a} * L * Z_{a}\right)}\right]^{0.5} * D^{2.5} * E$
where,
$H_{c}=C_{2} * S G *\left(H_{2}-H_{1}\right) * P_{\text {avg }}^{2} /\left(Z_{a} * T_{a}\right)$
$C_{1}=77.58$
$C_{2}=0.0375$
where,
$\mathrm{Q}=$ Flow Rate [SCFD]
F = Transmission Factor
$\mathrm{Tb}=$ Base Temperature [${ }^{\circ} \mathrm{R}$]
$\mathrm{Ta}=$ Average Temperature $\left[{ }^{\circ} \mathrm{R}\right]$
$\mathrm{Pb}=$ Base Pressure [psia]
P1 = Pressure at Inlet of pipe [psia]
P2 = Pressure at Outlet of pipe [psia]
D = Pipe Inside Diameter [inch]
L = Pipe Length [miles]
SG = Specific Gravity of Gas
$\mathrm{Za}=$ Average Gas Compressibility Factor
Pavg = Average Flow Pressure [psia]
$\mathrm{E}=$ Pipeline Efficiency
H1 = Elevation at Point 1 [feet]
$\mathrm{H} 2=$ Elevation at Point 2 [feet]

Friction Factor, \mathbf{f}, can be estimated using following relations -
Colebrook-White (Modified)

$$
\frac{1}{\sqrt{f}}=-2 * \log _{10}\left[\frac{\epsilon}{3.7}+\frac{2.825}{(\operatorname{Re} * \sqrt{f})}\right]
$$

IGT Improved
$\frac{1}{\sqrt{f}}=2.3095 * R e^{0.1}$
Chen

$$
\frac{1}{\sqrt{f}}=-2 \log _{10}\left(\frac{\epsilon}{3.7065}-\frac{5.0452}{R e} * \log _{10} C\right)
$$

where,
$C=\frac{\epsilon^{1.1096}}{2.8257}+\frac{7.149}{R e^{0.8961}}$
Gouder - Sonnad
$\frac{1}{\sqrt{f}}=0.8686 * \ln \left[\frac{0.4587 * R e}{C-0.31^{C /(C+1)}}\right]$
where,
$C=0.124 * R e * \epsilon+\ln (0.4587 * R e)$
Renouard
$\frac{1}{\sqrt{f}}=0.21 * R e^{-0.2}, R e<4000$
$\frac{1}{\sqrt{f}}=2.4112 * R e^{0.09}, 4000<R e<4 e 6$
$\frac{1}{\sqrt{f}}=2.1822 * R e^{0.1}, R e>4 e 6$

Figure 2.2 - Equations Tab
The Input Variable for the PPI Gas Pipeline Calculator consists of Pipe Data, Gas Composition, Gas Properties, and Units for the input variables and calculated values. Input data will remain for each consecutive calculation unless it is manually changed. There isn't a button to clear all fields. Figure 2.3 below shows the Pipe Data subtab of the Input Variables tab. The "Solve For" field, the "Pipe Internal Diameter" field, and the "Pipe Roughness" field have pull down menus so you can select a value. The Pipeline Data Fields will change depending on which parameter you select to solve for. Solve for choices are shown in Figure 2.4. If you select internal diameter, you need to enter values for $\mathrm{Q}, \mathrm{L}, \mathrm{P} 1$ and P 2 . If you select P 2 , you need to enter values for $\mathrm{Q}, \mathrm{D}, \mathrm{L}$, and P 1 .

Pastics Pipensstatue Gas Pipeline Calculator

The pull down menu of the Pipe Internal Diameter field can be used to select a pipe size and DR to enter an internal diameter or value can be manually entered. The same is true for the Pipe Roughness field; a value can be selected from the menu or it can be manually entered.

Figure 2.3 - Pipe Data Fields subtab of Input Variables tab
Input Variables Result Equations

Pipe Data Gas Composition Gas Properties Units

Figure 2.4 - Options to Solve For on pull down menu

Pipeline Data

Solve For
Gas Flow Rate, Q
Gas Flow Rate, Q
Pipe Internal Diameter, D
Pipe Length, L
Inlet Pressure, P1
Outlet Pressure, P2

Plastics Pipe lnstitute Gas Pipeline Calculator

Figure 2.5 below shows the Gas Composition subtab of the Input Variable tab. The composition of the gas can be changed by entering the percentage of each gas in the mixture. Fields at the bottom of the table allow the user to enter variables for a gas that may not be in the table. The percentages of all the gases must equal 100% at the bottom of the table. Input data will remain for each consecutive calculation unless it is manually changed. The gas mixture specific gravity, dynamic viscosity, and density are calculated from these percentages. The average compressibility of the gas mixture is determined from the average gas pressure and temperature.

Figure 2.6 below shows the Gas Properties subtab of the Input Variable tab. The default base pressure and base temperature are 14.7 psia and $60^{\circ} \mathrm{F}$. The user can manually change these values by checking the box next to the variable and entering a different value. The average compressibility factor ($\mathrm{Z}_{\text {avg }}$) and dynamic viscosity (μ) of the gas mixture will automatically be calculated after the gas composition is entered. These parameters can be manually changed by selecting "User Defined" as the variable determination factor. The methods used to calculate $Z_{\text {avg }}$ and μ are discussed in Section 3. Other parameters on this Gas Properties subtab that are automatically calculated after entering the gas composition include molecular weight, pseudo-critical temperature, pseudo-critical pressure, specific gravity (G), and gas density (ρ). The inlet and outlet temperatures should be adjusted as needed. If they are unknown, enter the average ground temperature for each.

Figure 2.7 shows the Units subtab of the Input Variables tab. The calculator will convert input variables and calculated values automatically if a variable unit of measure is changed. The units can be changed on the following variables:

- Temperature $\left({ }^{\circ} \mathrm{F},{ }^{\circ} \mathrm{C}, \mathrm{K},{ }^{\circ} \mathrm{R}\right)$
- Length (miles, $\mathrm{km}, \mathrm{m}, \mathrm{ft}$)
- Roughness (inch or mm)
- Elevation (inch, feet, mm, m)
- Velocity (ft / s or m / s)
- Pressure (gauge or absolute: psi, $\mathrm{kg} / \mathrm{cm}^{3}$, bar, atm, kPa)
- Dynamic Viscosity (centipoise, $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft} / \mathrm{s}, \mathrm{lb}_{\mathrm{f}}{ }^{*} \mathrm{~s} / \mathrm{ft}^{2}, \mathrm{~kg} / \mathrm{m} / \mathrm{s}$, etc.)

The results are automatically updated anytime a variable is changed. Figure 2.8 shows the Results tab. A report can be generated by selecting the Report button below the results table. After selecting the Report button, enter project and user data (see Figure 2.9) before opening or downloading the report. The report summarizes all input and calculated variables (see Figure 2.10).

Plastics Pipe Institute

Figure 2.5 - Gas Composition subtab of Input Variables

Gas	Formula	MW	Specific Gravity, G	Tc	Pc	Specific Heat Ratio, Cp/Cv	\% Gas Mixture
				${ }^{\circ} \mathrm{F}$	psia		
Air		28.96	1.00	-220.9	549.1	1.40	50
Ammonia	NH3	17.03	0.5880	270.4	1636	1.32	0.0
Argon	Ar	39.95	1.38	-188.2	706.9	1.66	0.0
Carbon Dioxide	CO 2	44.01	1.52	87.89	1070	1.28	0.0
Carbon Monoxide	CO	28.02	0.9673	-220.5	507.0	1.40	0.0
Ethane	C2H6	30.07	1.04	90.05	708.3	1.18	0.0
Ethylene	C 2 H 4	28.05	0.9686	48.65	730.4	1.24	0.0
Helium	He	4.00	0.1382	-450.3	32.33	1.66	0.0
Heptane	C7H16	100.2	3.46	512.7	396.8	1.05	0.0
Hexane	C6H14	86.18	2.98	453.6	430.6	1.06	0.0
Hydrogen	H2	2.02	0.06960	-399.9	188.1	1.41	0.0
Hydrogen Sulfide	H2S	34.08	1.18	212.1	1296	1.32	0.0
i-Butane	iC4H10	58.12	2.01	274.9	529.1	1.19	0.0
i-Pentane	iC5H12	72.15	2.49	369.1	490.8	1.08	0.0
Methane	CH4	16.04	0.5539	-116.6	667.2	1.32	50
n-Butane	nC4H10	58.12	2.01	305.7	551.1	1.18	0.0
n -Pentane	$\mathrm{nC5H} 12$	72.15	2.49	385.6	489.4	1.08	0.0
Nitrogen	N2	28.01	0.9671	-232.5	492.3	1.40	0.0
Octane	C8H18	114.2	3.94	564.2	360.1	1.05	0.0
Oxygen	O 2	32.00	1.10	-181.4	731.9	1.40	0.0
Propane	C3H8	44.10	1.52	206.0	615.8	1.13	0.0
							0.0
							0.0
Total (\% Gas)							100.0

1. Critical temperatures, critical pressures, and specific heat ratios from https://www.engineeringtoolbox.com/specific-heat-ratio-d 608.html

Pastics Pipe lnstitute Gas Pipeline Calculator
Figure 2.6 - Gas Properties subtab of Input Variables

PPI Gas Pipeline Calculator

Figure 2.7- Units of Measure subtab of Input Variables

Input Variables Result Equations

Pipe Data Gas Composition Gas Properties Units

Elevation Difference
ft
Gas Flowrate
MCFH
Velocity
ft / s
Dynamic Viscosity
$\mathrm{Ib} / \mathrm{ft} . \mathrm{s}$

Pastics Pipe lastitute Gas Pipeline Calculator
Figure 2.8- Results Tab

Input Variables Result Equations

Solution/ Design Parameter based on Transmission Factor Calculation Method

Method		Colebrook-White (Modified)	IGT Improved	Chen	Goudar-Sonnad	Renouard - High
Flowrate	MCFH	4,380	4,906	4,402	4,405	4,607
Friction Factor, f		0.00827	0.00660	0.00819	0.00818	0.00748
Transmission Factor, F		10.99	12.31	11.05	11.06	11.56
Reynold's No., Re		$1.66 \mathrm{e}+7$	$1.86 \mathrm{e}+7$	$1.67 \mathrm{e}+7$	$1.67 e+7$	$1.74 \mathrm{e}+7$
Applicable Re Range		4e3-1e8	1.6e3-3e6	4e3-4e8		$>4 \mathrm{e} 6$
Pressure, Pavg	psia	903.7	903.7	903.7	903.7	903.7
z Value		0.7442	0.7442	0.7442	0.7442	0.7442
Viscosity, μ	$\mathrm{lb} / \mathrm{ft.s}$	0.00000870	0.00000870	0.00000870	0.00000870	0.00000870
Velocity Inlet	ft / s	23.49	26.31	23.61	23.62	24.70
Velocity Outlet	ft / s	29.36	32.89	29.51	29.53	30.88
Erosional Velocity	ft / s	43.33	43.33	43.33	43.33	43.33
Sonic Velocity	ft / s	1088	1088	1088	1088	1088
Mach No.		0.02159	0.02418	0.02170	0.02171	0.02270

Report

Figure 2.9- Report Input Data

Project Name			Developed By
Project Name			Developer
Date			Approved By
mm / d	/yyyy	\square	Approver
Revision			Reviewed By
0			Reviewer
Open	Down		

Figure 2.10- Report Generated by Calculator

Plastics Pipe lnstitute Gas Pipeline Calculator

3.0 Parameters Used in Calculator

This section describes the variables used in calculator and the equations and correlations used to determine variables that are not entered.

Density ($\boldsymbol{\rho}$) is gas mass per volume. Gas density increases with increasing pressure or decreasing temperature and, decreases with decreasing pressure or increasing temperature. For relatively short lengths of pipe with small pressure drop, the density change will be minimal. In this situation the gas can be treated as incompressible and the Darcy-Weisbach equation can be used. For long pipelines with large pressure differences from inlet to outlet, the density will change appreciably, and a compressible flow equation must be used.

$$
\rho=\mathbf{m} / \mathbf{V}=\mathbf{M} * \mathbf{P} /\left(\mathbf{z}^{*} * \mathbf{R}_{\mathbf{u}} * \mathbf{T}\right) \quad\left[\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}, \text { slugs } / \mathrm{ft}^{3}, \text { or } \mathrm{kg} / \mathrm{m}^{3}\right]
$$

Specific Weight (γ) is the weight per unit volume, typically expressed in $\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{3}$ or $\mathrm{kN} / \mathrm{m}^{3}$. It is equal to the density times the acceleration of gravity $\left(\mathrm{g}=32.17 \mathrm{ft} / \mathrm{sec}^{2}\right.$ or $\left.9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$.

$$
\gamma_{\mathrm{gas}}=\left(\rho_{\mathrm{gas}}\right)(\mathbf{g})\left[\frac{l b_{m}}{f t^{3}} * 32.2 \frac{f t}{s^{2}}\right]
$$

Specific Volume (v) is the inverse of density. Typical units include: $\mathrm{ft}^{3} / \mathrm{slug}, \mathrm{or}^{3} / \mathrm{kg}$.

$$
\mathbf{v}_{\text {gas }}=1 / \rho_{\text {gas }} \quad\left[\mathrm{ft}^{3} / l b_{\mathrm{m}}\right]
$$

Specific Gravity (SG) of a gas is a dimensionless quantity representing the ratio of the density of the gas to the density of air at the same temperature and pressure. The density of air at $60^{\circ} \mathrm{F} \& 1$ atmosphere $(14.7 \mathrm{psi})$ is 0.002373 slugs $/ \mathrm{ft}^{3}=0.002373 \mathrm{lb}_{\mathrm{f}} * \mathrm{~s}^{2} / \mathrm{ft}^{4}$. Air density will change based on temperature, pressure, and humidity.

$$
\mathbf{S G}=\rho_{\text {gas }} / \rho_{\text {air }}=\mathrm{Mgas}_{\mathrm{gas}} / \mathrm{M}_{\mathrm{air}}=\mathrm{Mgas} / 28.987 \sim \mathrm{M}_{\mathrm{gas}} / 29
$$

The SG of a gas mixture can be determined using the following equation:

$$
\mathrm{SG}_{\text {mix }}=\mathrm{M}_{\text {mix }} / \mathrm{M}_{\text {air }}=\frac{\sum_{i=1}^{n} \% \operatorname{gas}_{i} M_{i}}{29}
$$

Molecular Weight (M) of a gas is mass per mole. For a gas mixture, it is the summation of the individual molecular components. The molecular weight and specific gravity of a natural gas sample are related to each other by the equation:

$$
\mathbf{M g a s}=(\mathbf{S G g a s})\left(\mathbf{M a i r}_{\text {air }}\right)\left[\mathrm{lb}_{\mathrm{m}} / \mathrm{lb}_{\text {mole }}, \mathrm{g} / \mathrm{mole}, \text { or } \mathrm{kg} / \mathrm{kg}_{\text {mole }}\right]
$$

Plastics Pipe Institute
where: $\quad \mathrm{M}_{\mathrm{air}} \sim 29 \mathrm{lb}_{\mathrm{m}} / \mathrm{lb}_{\text {mole }}$

Compressibility Factor (z) - The compressibility factor or z-factor of a gas is a measure of its deviation from ideal gas law. It is the ratio of the volume occupied by a given amount of gas to the volume occupied by the same amount of ideal gas. At temperatures much greater than the critical temperature of a gas and/or pressures much less than the critical pressure of a gas, it will follow the ideal gas law and the compressibility factor will be one. If the temperature is low enough and/or the pressure is high enough so that the gas will not exhibit ideal gas behavior, then the value of the compressibility factor will be less than one. Excluding compressibility factor or assuming it to be unity results in lower flow rates, higher pressure drops, or larger pipes sizes than would result if compressibility were considered.

The ideal gas law modified with the inclusion of the compressibility factor to account for non-ideal gases is as follows:

$$
\mathbf{P} \mathbf{V}_{\text {ideal }}=\mathbf{n} \mathbf{R}_{\mathbf{u}} \mathbf{T}
$$

Substituting z,

$$
\mathbf{P} V_{\text {actual }}=\mathrm{znR}_{\mathbf{u}} T
$$

Where:

$$
\begin{aligned}
& \mathrm{z}=\mathrm{V}_{\text {actual }} / \mathrm{V}_{\text {ideal }} \\
& \mathbf{P}=\text { absolute gas pressure [psia] } \\
& \mathbf{V}=\text { gas volume }\left[\mathrm{ft}^{3}\right] \\
& \mathbf{n}=\mathbf{m} / \mathbf{M}=\text { gas mass }\left[1 \mathrm{~b}_{\mathrm{m}}\right] \text { divided by its molecular weight }\left[1 \mathrm{~b}_{\text {moles }}\right] \\
& \mathbf{R}_{\mathbf{u}}=\text { universal gas constant }=10.731 \frac{p \text { sia } * f t^{3}}{l b_{\text {mol }} * O R}=1545.4 \frac{f t * l b_{f}}{l b_{\text {mol }} * O R} \\
& \mathbf{T}=\text { gas absolute temperature }\left[{ }^{\circ} \mathrm{R}\right]
\end{aligned}
$$

Substituting $\mathbf{n}=\mathbf{m} / \mathbf{M}$ and $\rho=\mathbf{m} / \mathbf{V}$ into the ideal gas law equation,

$$
\rho=\mathbf{m} / \mathbf{V}=\mathbf{P M} / \mathbf{z} R_{u} \mathbf{T}=\mathbf{P} * \mathbf{S G} * \mathbf{M a i r} / \mathbf{z} R_{u} \mathbf{T}
$$

There are several correlations and equations for compressibility factor as a function of temperature and pressure for gases. Correlations depend on the reduced temperature (T_{r}) and reduced pressure $\left(\mathrm{P}_{\mathrm{r}}\right) . \mathrm{T}_{\mathrm{r}}$ and P_{r} are calculated by dividing the temperature and pressure of the gas by its critical temperature $\left(\mathrm{T}_{\mathrm{r}}=\mathrm{T} / \mathrm{T}_{\mathrm{c}}\right)$ and critical pressure $\left(\mathrm{P}_{\mathrm{r}}=\mathrm{P} / \mathrm{P}_{\mathrm{c}}\right)$. These values are then used to find the corresponding z-value on a Lee-Kesler chart (see Figure 3.1).

Figure 3.1 - Lee-Kesler Simple Fluid Compressibility Chart

The PPI Gas Calculator estimates the compressibility factor for natural gas based on Dranchuk and Abou-Kassem equation of state (ref). It is expressed as follows:

$$
\begin{aligned}
& z_{a v g}=\left(1+A_{1}+\frac{A_{2}}{T_{p r}}+\frac{A_{3}}{T_{p r}^{3}}+\frac{A_{4}}{T_{p r}^{4}}+\frac{A_{5}}{T_{p r}^{5}}\right) \rho_{r}+\left(A_{6}+\frac{A_{7}}{T_{p r}}+\frac{A_{8}}{T_{p r}^{2}}\right) \rho_{r}^{2}-A_{9}\left(\frac{A_{7}}{T_{p r}}+\frac{A_{8}}{T_{p r}^{2}}\right) \rho_{r}^{5}+A_{10} * \\
& \left(1+A_{11} * \rho_{r}^{2}\right) \frac{\rho_{r}^{2}}{T_{p r}^{3}} e^{\left(-A_{11} \rho_{r}^{2}\right)}
\end{aligned}
$$

Where
$\rho_{r}=$ reduced density $=\frac{0.27 * P_{p r}}{z_{p} T_{p r}}$
$P_{p r}=$ psuedo reduced pressure $\frac{P[p s i a]}{P_{p c}}$
$T_{p r}=$ psuedo reduced temperature $=\frac{T[o R]}{T_{p c}}$
$P_{p c}=$ pseudo crtical pressure $=\left(4.6+0.1 * S G_{g}-0.258 * S G_{g}^{2}\right) * 10.1325 * 14.7$
$T_{p c}=$ pseudo critical temperature $=\left(99.3+180 * S G_{g}-6.94 * S G_{g}^{2}\right) * 1.8$
$A_{1}=0.3265$
$A \neg=-1.0700$
$A_{3}=-0.5339$
$A_{4}=0.01569$
$A_{5}=-0.05165$
$A_{6}=0.5475$
$A_{7}=-0.7361$
$A_{8}=0.1844$
$A_{9}=0.1056$
$A_{10}=0.6134$
$A_{11}=0.7210$
Because the parameter z is embedded in ρ_{r}, an iterative solution is necessary to solve the equation. This estimate has an average absolute error of 0.486% with a standard deviation of 0.00747 over ranges of pseudoreduced pressure and temperature of:

$$
0.2<p_{p r}<30 \text { with } 1.0<T_{p r}<3.0
$$

and

$$
p_{p r}<1.0 \text { with } 0.7<T_{p r}<1.0
$$

This equation is not recommended outside these ranges of critical temperature ($T_{p r} \sim 1.0$) and pressures ($p_{p r}>1.0$).

Dynamic (Absolute) Viscosity (μ) is a quantity measuring the shear force needed to overcome resistance to deformation from internal friction in a fluid or gas. The dynamic viscosity of a fluid is temperature dependent. Newtons Law for shear stress (T) incorporates dynamic viscosity and is defined as:

$$
\mathrm{T}=\mathbf{F} / \mathbf{A}=\mu * d u / d \boldsymbol{y} \quad\left[\mathrm{lb}_{\mathrm{f}} / \mathrm{ft}^{2}, \mathrm{~N} / \mathrm{m}^{2}\right]
$$

Where: $\mathrm{F}=$ force $\left[\mathrm{lb}_{\mathrm{f}}, \mathrm{N}\right]$
$\mathrm{A}=$ surface area $\left[\mathrm{ft}^{2}, \mathrm{~m}^{2}\right]$
$d u=$ change in velocity [$\mathrm{ft} / \mathrm{s}, \mathrm{m} / \mathrm{s}$]
$d y=$ distance between fluid layers [ft, m]

$$
d u / d y=\text { shear rate }\left[\mathrm{s}^{-1}\right]
$$

The PPI Gas Calculator estimates the dynamic viscosity of natural gas using the Lee, Gonzalez and Eakin method.

$$
\mu_{g}=10^{-4} * k_{v} * e^{\left[x_{v}\left(\frac{\rho}{62.4}\right)^{y_{v}}\right]}
$$

Where

$$
\begin{gathered}
k_{v}=\frac{(9.4+0.02 * M) * T_{a v g}^{1.5}}{\left(209+19 * M+T_{\text {avg }}\right)} \\
y_{v}=2.4-0.2 * x_{v} \\
x_{v}=3.5+\frac{986}{T}+0.01 * M
\end{gathered}
$$

$\mathbf{T}_{\text {avg }}=$ average gas temperature [${ }^{\circ} \mathrm{R}$]
$\rho=$ gas density $\left[\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right]$
$\mathbf{M}=$ molecular weight of the gas $\left[1 \mathrm{~b}_{\mathrm{m}} / \mathrm{lb}_{\mathrm{mol}}\right]$
$\mu_{\mathrm{g}}=$ dynamic viscosity of the gas [cp]

1 centipoise $(\mathrm{cp})=0.0000208854 \mathrm{lb}_{\mathrm{f}} * \mathrm{~s} / \mathrm{ft}^{2}=0.000671969 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft} / \mathrm{s}$

Kinematic Viscosity (v) is derived from the ratio of a fluid's dynamic viscosity and its specific weight (density x acceleration of gravity). Two fluids with the same dynamic viscosity can have very different kinematic viscosities depending on their densities. Kinematic Viscosity is expressed as:

$$
v=\mu /(\rho \mathrm{g})=\mu / \gamma \quad\left[\mathrm{ft}^{2} / \mathrm{sec}, \mathrm{~m}^{2} / \mathrm{s} \text {, or centistokes }\right]
$$

Reynolds Number ($\mathbf{R e}$) is a dimensionless quantity used to determine the flow regime (laminar or turbulent) of a moving fluid or gas. For flow in pipes, it is defined as:
$R e=\frac{v D_{i} \rho}{\mu}\left[\frac{f t}{s} \frac{f t}{1} \frac{l b_{m}}{f t^{3}} \frac{s * f t}{l b_{m}}\right]$
Substituting Q / A for v and $\frac{M_{a i r} S G * P_{b}}{z * R_{u} * T_{b}}$ for ρ,
$R e=\frac{Q D \rho}{A \mu}=\frac{4 Q D}{\pi D^{2} \mu} * \frac{M_{a i r} S G * P_{b}}{z * R_{u} * T_{b}}=\frac{\boldsymbol{Q} * \boldsymbol{S} \boldsymbol{G} * \boldsymbol{P}_{\boldsymbol{b}}}{\boldsymbol{z} * \boldsymbol{\mu} * \boldsymbol{D} * \boldsymbol{T}_{\boldsymbol{b}}} * \frac{4 * 29 \frac{l b_{m}}{l b_{\text {mol }}} * \frac{1 h r}{3600} * \frac{1000 c f}{1 M c f}}{\pi * 10.731 \frac{p s i a * f t^{3}}{l b_{m o l} * O R} * \frac{1 f t}{12 i n}}$
Simplified,
$R e=11.46955 * \frac{Q * S G * P_{b}}{z_{\text {avg }} * D_{i} * \mu * T_{b}}\left[\frac{f t^{3}}{s} * \frac{l b_{m}}{l b_{m o l}} * \frac{p s i a}{f t} * \frac{s * f t}{l b_{m}} * \frac{1}{o R} * \frac{l b_{m o l} * o R}{f t^{3} * p s i a}\right]$

Where:

$$
\begin{aligned}
& \mathbf{v}=\text { velocity }=\mathbf{Q} / \mathbf{A} \\
& \mathbf{Q}=\text { flow rate }[\mathrm{Mcfh}] \\
& \mathbf{A}=\text { pipe internal flow area }=\pi \frac{D_{i}^{2}}{4} \\
& \mathbf{D}_{\mathbf{i}}=\text { average internal diameter of the pipe }[\mathrm{in}]=\mathrm{D}_{\mathrm{o}}-2.12^{*} \mathrm{D}_{\mathrm{o}} / \mathrm{DR} \text { for PE pipe } \\
& \quad \text { Where } \\
& \quad \mathrm{D}_{\mathrm{o}}=\text { outside diameter of pipe } \\
& \quad \mathrm{DR}=\text { pipe dimension ratio }=\mathrm{D}_{\mathrm{o}} / \mathrm{t}_{\mathrm{min}} \\
& \quad \mathrm{t}_{\text {min }}=\text { minimum PE pipe wall thickness }=\mathrm{D}_{\mathrm{o}} / \mathrm{DR} \\
& \boldsymbol{\mu}=\text { dynamic viscosity }\left[\mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{*} \mathrm{~s}\right)\right] \\
& \mathbf{R}_{\mathbf{u}}=\text { universal gas constant }=10.731 \frac{p_{s i a *} t^{3}}{l b_{m o l} * o R} \\
& \mathbf{P}_{\mathbf{b}}=\text { base pressure }[\mathrm{psia}] \\
& \mathbf{T}_{\mathbf{b}}=\text { base temperature }\left[{ }^{\circ} \mathrm{R}\right]
\end{aligned}
$$

Laminar flow occurs with high viscous fluids traveling at low velocity. In laminar flow, the velocity vectors line up in the direction of flow. Laminar pipe flow occurs at a $\operatorname{Re}<2100$. Turbulent flow is characterized by mixing with velocity vectors going in all directions, but the overall flow is in one direction. Turbulent flow takes place with low viscous fluids at high velocity. Transport of natural gas in a pipeline is typically turbulent flow. Turbulent flow occurs at $\operatorname{Re}>4000$. Figure 3.2 illustrates the velocity vector differences between laminar and turbulent flow in a pipe.

Figure 3.2 - Laminar and Turbulent Flow Velocity Vectors

Laminar Flow ($\mathrm{Re}<2100$)

Turbulent Flow $(\operatorname{Re}>4000)$

Plastics Pipe Institute

In the transition region between Reynolds numbers of 2100 and 4000, the flow may be either laminar or turbulent, depending upon factors like the entrance conditions into the pipe and the roughness of the pipe surface.

Roughness Factor ($\mathbf{(}$) is the mean protruding height of relatively uniformly distributed and sized, tightly packed sand grains that would give the same
pressure-gradient behavior as the actual protrusions, indentations, and micro-fissures of the pipe wall. Typical units for roughness include inches, feet, and mm. Pipe wall surface roughness is a function of the pipe material, coating type, and pipe age. Corrosion, erosion, and scale buildup over time will increase the roughness factor, reducing flow rates and increasing pressure losses for fluids passing through them. Figure 3.3 illustrates interior roughness of a pipe. Table 3.1 lists roughness value ranges for several pipe types.

Figure 3.3 - Pipe wall Interior Roughness

Table 3.1 - Typical Pipe Roughness Values

Pipe Material	Surface roughness, e (ft)	Surface roughness, e (in)
Plastics, HDPE, glass	$3-7 \times 10^{-6}$	$3.6-8.4 \times 10^{-5}$
Steel, smooth to Welded and lined	$30-300 \times 10^{-6}$	$3.6-36 \times 10^{-4}$
New Cast/Wrought/Ductile Iron, plain to lined	$30-800 \times 10^{-6}$	$3.6-96 \times 10^{-4}$
Wood Stave	$600-3000 \times 10^{-6}$	$72-360 \times 10^{-4}$
Concrete (depends on forming \& finish)	$1,000-16,700 \times$ 10^{-6}	$120-2000 \times 10^{-4}$
Cast/Wrought/Ductile Iron, plain, General Tuberculation	$2,700-8,300 \times 10^{-}$ 6	$324-996 \times 10^{-4}$
Cast/Wrought/Ductile Iron, plain, Severe Tuberculation \& Incrustation	$8,300-30,000 \times$ 10^{-6}	$996-3600 \times 10^{-4}$

(2PPI
 Plastics Pipe lnstitute Gas Pipeline Calculator

Relative Roughness $(\mathbf{\epsilon}=\mathbf{e} / \mathbf{D})$ is the absolute roughness divided by the pipe inside diameter.
Moody friction factor (f) is needed for any calculations with the Darcy-Weisbach or General Flow equations. One method of obtaining a value for f is graphically using the Moody friction factor diagram (see Figure 3.4) and values of Re and relative roughness (e/D). Equations for estimating \boldsymbol{f} are discussed in section 5 .

Figure 3.4 - Moody Diagram

Velocity (v) of gas flow represents the speed at which the gas moves in the pipeline. It depends on pressure and will vary along the pipeline due to frictional losses. As the pressure changes the density of the gas also changes. The highest velocity will be at the downstream end of the pipe where the pressure is the least. The lowest velocity will be the upstream end of the pipe where the pressure is higher. Because the mass flow through the pipe is constant, the following relationships can be written:

$$
Q_{1} \rho_{1}=Q_{2} \rho_{2}=Q_{b} \rho_{b}
$$

Therefore,
$Q_{1}=Q_{b}\left(\frac{\rho_{b}}{\rho_{1}}\right)$ and $Q_{2}=Q_{b}\left(\frac{\rho_{b}}{\rho_{2}}\right)$
Substituting for ρ,

$$
Q_{1}=Q_{b}\left(\frac{P_{b} / z_{b} R T_{b}}{P_{1} / z_{1} R T_{1}}\right)=Q_{b} \frac{P_{b}}{P_{1}} \frac{T_{1}}{T_{b}} \frac{z_{1}}{z_{b}} \text { and } Q_{2}=Q_{b} \frac{P_{b} \frac{T_{2}}{P_{2}} \frac{z_{2}}{T_{b}} \frac{z_{b}}{z_{2}}}{}
$$

Since $\mathrm{Q}=\mathrm{v}^{*} \mathrm{~A}$ and $\mathrm{z}_{\mathrm{b}} \sim 1$,
$v_{1}=\frac{4}{\pi} \frac{Q_{b}}{D_{i}^{2}} \frac{P_{b}}{P_{1}} \frac{T_{1}}{T_{b}} Z_{1}=0.002122 \frac{Q_{b}}{D_{i}^{2}} \frac{P_{b}}{P_{1}} \frac{T_{1}}{T_{b}} Z_{1}$
and
$v_{2}=\frac{4}{\pi} \frac{Q_{b}}{D_{i}^{2}} \frac{P_{b}}{P_{2}} \frac{T_{2}}{T_{b}} Z_{2}=0.002122 \frac{Q_{b}}{D_{i}^{2}} \frac{P_{b}}{P_{2}} \frac{T_{2}}{T_{b}} Z_{2}$
Where
$\mathrm{Q}_{\mathrm{b}}=$ gas flow rate at standard conditions [$\mathrm{ft}^{3} /$ day $]$
$\mathrm{D}_{\mathrm{i}}=$ pipe internal diameter [inches]
$\mathrm{T}=$ temperature $\left[{ }^{\circ} \mathrm{R}\right]$
$\mathrm{P}=$ absolute pressure [psia]
Erosional Velocity ($\mathbf{V m a x}_{\text {m }}$) is maximum allowable gas velocity in a pipeline to limit noise and vibration. Acceptable velocities are generally less than 50% of $v_{\text {max. }}$. Erosional velocity can be estimated as:
$v_{\max }=\frac{100}{\sqrt{\rho}}=100 \sqrt{\frac{Z * R * T}{29 * S G * P}}$
Sonic Velocity ($\mathbf{v}_{\mathbf{s}}$) is the maximum possible velocity of a compressible fluid in a pipe.
$\mathrm{v}_{\mathrm{s}}=68.1 *\left[\left(\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}\right) \mathrm{P} / \mathrm{\rho}\right]^{0.5}=68.1 *[\mathrm{k} * \mathrm{P} / \rho]^{0.5}$
where, $\mathrm{k}=$ gas specific heat ratio $=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$
Mach Number $\left(\mathbf{M}_{\mathbf{a}}\right)$ is the velocity of the gas divided by the sonic velocity in gas.
$\mathrm{M}_{\mathrm{a}}=\mathrm{v} / \mathrm{v}_{\mathrm{s}}$

4.0 Derivation of General flow Equation

Under Steady State conditions, the momentum equation can be written as:

Equ. 4.1

$\rho^{2} \mu d u+\rho d P+\rho^{2} g d H+f \frac{d x}{D} \frac{c^{2}}{2}=0$
where
$\rho^{2} u d u=$ the change in velocity or kinetic energy head,
$\rho \mathrm{dP}=$ the change in pressure head,
$\rho^{2} \mathrm{~g} \mathrm{dH}=$ the change in elevation head, and
$f \mathrm{dx} / \mathrm{D}^{*} \mathrm{C}^{2} / 2 \mathrm{~g}=$ the friction head with f being the Darcy friction factor.
Setting $\rho u=\rho Q / A=$ constant C, the integration of the first term between velocities u_{1} and u_{2} becomes:

Equ. 4.2
$\int_{u_{1}}^{u_{2}} \frac{C^{2}}{u} d u=C^{2} * \ln \left(\frac{u_{2}}{u_{1}}\right)$
Since $\rho=P M / z R T$, the integration of the second term between pressures $P_{1} \& P_{2}$ becomes:
Equ. 4.3
$\int_{P_{1}}^{P_{2}} \rho d P=\int_{P_{1}}^{P_{2}} \frac{P M}{z R T} d P=\frac{M}{z_{\text {avg }} R T_{\text {avg }}} \int_{P_{1}}^{P_{2}} P d P=\frac{M}{z_{\text {avg }} R T_{\text {avg }}} * \frac{\left(P_{2}^{2}-P_{1}^{2}\right)}{2}$
Where
Equ. 4.4 $\mathrm{T}_{\text {avg }}=\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) / 2$

Since $\rho=\mathrm{PM} / \mathrm{zRT}$, the integration of the third term between elevations $\mathrm{H}_{1} \& \mathrm{H}_{2}$ becomes:
Equ. 4.5
$\int_{H_{1}}^{H_{2}} \rho^{2} g d H=\int_{H_{1}}^{H_{2}}\left(\frac{P M}{z R T}\right)^{2} g d H=\frac{g P_{\text {avg }}^{2} M^{2}}{z_{\text {avg }}^{2} R^{2} T_{\text {avg }}^{2}}\left(H_{2}-H_{1}\right)$
Integration of the last term between point x 1 and x 2 along a pipe length L becomes:
Equ. 4.6

$$
\int_{x_{1}}^{x_{2}} \frac{f * C^{2}}{2 D_{i}} d x=f C^{2} \frac{\left(x_{2}-x_{1}\right)}{2 D_{i}}=f \frac{L}{D_{i}} \frac{C^{2}}{2}
$$

Bringing all integrated portions together, the momentum equation becomes:

Equ. 4.7

$$
C^{2} * \ln \left(\frac{u_{2}}{u_{1}}\right)+\frac{M}{z_{a v g} R T_{a v g}} * \frac{\left(P_{2}^{2}-P_{1}^{2}\right)}{2}+\frac{g P_{a v g}^{2} M^{2}}{z_{a v g}^{2} R^{2} T_{a v g}^{2}}\left(H_{2}-H_{1}\right)+f \frac{L}{D_{i}} \frac{C^{2}}{2}=0
$$

The kinetic energy term is negligible in comparison to the other terms so the equation simplifies to:
Equ. 4.9

$$
\frac{M}{z_{a v g} R T_{a v g}} * \frac{\left(P_{2}^{2}-P_{1}^{2}\right)}{2}+\frac{g P_{a v g}^{2} M^{2}}{z_{a v g}^{2} R^{2} T_{a v g}^{2}}\left(H_{2}-H_{1}\right)+f \frac{L}{D_{i}} \frac{C^{2}}{2}=0
$$

Since $C=\rho Q / A$ and $\rho=P M / z R_{u} T$ at base conditions,
Equ. 4.10
$C^{2}=\frac{\rho_{b}^{2} Q^{2}}{A^{2}}=\frac{16 P_{b}^{2} M^{2} Q^{2}}{\pi^{2} D_{i}^{4} z_{b}^{2} R_{u}^{2} T_{b}^{2}}$
Substituting Equ. 10 into the equation Equ. 9, and solving for Q^{2},
$Q^{2}=\frac{\pi^{2}}{16} \frac{D^{5}}{L} \frac{2}{f} \frac{z_{b}^{2} R_{u}^{2}}{M^{2}} \frac{T_{b}^{2}}{P_{b}^{2}}\left[\frac{M *\left(P_{1}^{2}-P_{2}^{2}\right)}{2 * z_{a v g} R_{u} T_{a v g}}-\frac{g P_{a v g}^{2} M^{2} *\left(H_{2}-H_{1}\right)}{z_{a v g}^{2} R_{u}^{2} T_{a v g}^{2}}\right]$
Solving for Q after substituting $\mathrm{SG} * \mathrm{M}_{\text {air }}$ for molecular mass (M) and $\mathrm{C}_{1} \& \mathrm{C}_{2}$ for constants and simplifying, we get the General Flow Equation (Equ. 4.11):

Equ. 4.11

$$
\mathrm{Q}=\frac{\mathrm{C}_{1}}{\sqrt{f}} * z_{b} * D_{i}^{5 / 2} * \frac{T_{b}}{P_{b}} *\left[\frac{\left(P_{1}^{2}-P_{2}^{2}\right)-C_{2} * P_{a v g}^{2} * S G \frac{\left(H_{2}-H_{1}\right)}{z_{\text {avg }} * T_{a v g}}}{S G * L * z_{a v g} * T_{a v g}}\right]^{\frac{1}{2}} * \eta
$$

Where,
$1 / f^{1 / 2}=\mathrm{F}_{\mathrm{t}}=$ Von Karman transmission factor
$\eta=$ efficiency factor with typical values between 0.8 and 1 . Gas system modelers use the efficiency factor to adjust their model flow estimates based on actual measured conditions like metered flows and pressure readings. A value of 0.95 is commonly used.
L = Pipe Length [miles]
$\mathrm{D}_{\mathrm{i}}=$ Pipe Inside Diameter [inches]
$\mathrm{Q}=$ Flow Rate [$\mathrm{ft}^{3} /$ day]
$C_{1}=\left(\frac{\pi^{2}}{16} * \frac{R_{u}}{M_{\text {air }}}\right)^{\frac{1}{2}} * i n^{\frac{5}{2}} * \frac{l b}{\mathrm{in}^{2}} *\left(\frac{1}{m i l e}\right)^{\frac{1}{2}} *\left(\frac{1}{\mathrm{oR}}\right)^{\frac{1}{2}} * \frac{o R}{l b /{ }_{\text {in }}{ }^{2}} *\left(\frac{12 i n}{1 F t}\right)^{\frac{1}{2}} * \frac{1 F t^{3}}{1728 \text { in }^{3}} *\left(\frac{1 \text { Mile }}{5280 F t}\right)^{\frac{1}{2}}$
$* \frac{3600 s}{1 h r} * \frac{24 h r}{1 D a y}$
$C_{1}=\left(\frac{\pi^{2}}{16} * \frac{49762 \frac{f t^{2} * l b_{m}}{s^{2} * l b_{m o l} * o R}}{28.97 \frac{l b_{m}}{l b_{m o l}}}\right)^{\frac{1}{2}} * 2.3836=77.58 \frac{f t^{3} * i n^{\frac{-5}{2}}}{d a y}\left(\frac{m i l e}{o R}\right)^{\frac{1}{2}}$
$C_{2}=2 \mathrm{~g} \frac{M_{\text {air }}}{R_{u}}=\frac{2 * 32.2 \frac{f t}{s^{2}} * 28.97 \frac{l b_{m}}{l b_{m o l}}}{49762 \frac{f t^{2} * l b_{m}}{s^{2} * l b_{m o l} * o R}}=0.0375 \frac{o R}{f t}$
$\mathrm{P}_{\text {avg }}=(2 / 3)\left[\left(\mathrm{P}_{1}+\mathrm{P}_{2}-\left(\mathrm{P}_{1} * \mathrm{P}_{2}\right) /\left(\mathrm{P}_{1}+\mathrm{P}_{2}\right)\right]\right.$ or $\frac{2}{3}\left[\frac{P_{1}^{3}-P_{2}^{3}}{P_{1}^{2}-P_{2}^{2}}\right]$
$\mathrm{T}_{\text {avg }}=\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right) / 2\left[{ }^{\mathrm{o}} \mathrm{R}\right]$ where ${ }^{\circ} \mathrm{R}={ }^{\circ} \mathrm{F}+459.67$
Replace L with L_{E} when estimating flow rates for two or more different pipe sizes in series (see Figure 4.1), where:
$\mathrm{L}_{\mathrm{E}}=$ Equivalent Length $=\sum_{n=1}^{i} L_{i}\left[\frac{D_{E}}{D_{i}}\right]^{4.8539} \sim L_{1}+L_{2}\left(\frac{d_{1}}{d_{2}}\right)^{5}+L_{3}\left(\frac{d_{1}}{d_{3}}\right)^{5}+\cdots$
$\mathrm{D}_{\mathrm{E}}=$ Equivalent internal diameter (diameter you want to convert
to)
$D_{i}=$ Internal diameter of pipe section i with length L_{i}

Figure 4.1 - Different Size Pipe in series

Equation 4.11 can be rewritten to solve for D and L where units are Q [cfs], $\mathrm{L}[\mathrm{Ft}], \mathrm{P}[\mathrm{psf}], \mathrm{H}[\mathrm{Ft}]$, $\mathrm{R}_{\mathrm{u}}\left[\frac{f t^{2} * l b_{f}}{s^{2} l b_{\text {mol }} * O R}\right]$

Equ. 4.12
D_{i} [inches] $\left.=\frac{12}{\eta} *\left[\frac{P_{b}^{2}}{T_{b}^{2}} * \frac{16}{\pi^{2}} * \frac{f}{z_{b}^{2}} \frac{R_{u}\left(P_{1}^{2}-P_{2}^{2}\right)}{\left[S G M_{\text {air }} * Z_{\text {avg }} T_{\text {avg }}\right.}-\frac{2 g P_{\text {avg }}^{2} *\left(H_{2}-H_{1}\right)}{z_{\text {avg }}^{2} T_{\text {avg }}^{2}}\right]\right]^{1 / 5}$

Equ. 4.13

$\mathrm{L}[\mathrm{Ft}]=\frac{\eta}{Q^{2}} \frac{\pi^{2}}{16} \frac{D^{5}}{f} \frac{z_{b}^{2}}{1} \frac{T_{b}^{2}}{P_{b}^{2}}\left[\frac{R_{u}\left(P_{1}^{2}-P_{2}^{2}\right)}{S G * M_{\text {air }} z_{\text {avg }} T_{\text {avg }}}-\frac{2 g P_{a v g}^{2}\left(H_{2}-H_{1}\right)}{z_{a v g}^{2} T_{a v g}^{2}}\right]$
Solving for P_{1} and P_{2} is a little more difficult. The simple arithmetic equation for $\mathrm{P}_{\text {avg }}$ was substituted into Equ. 11 to simplify this solution. Inserting constants C4, C5, and C6 as defined below, we can begin to solve for P_{1} and P_{2}.

Equ. $4.14 \quad Q^{2}=C_{4}\left[C_{5}\left(P_{1}^{2}-P_{2}^{2}\right)-C_{6} *\left[\frac{P_{1}+P_{2}}{2}\right]^{2}\right]$
Where

$$
\begin{aligned}
& C_{4}=\frac{\pi^{2}}{16} \frac{D^{5}}{L} \frac{1}{f} \frac{z_{b}^{2} R_{u}}{M} \frac{T_{b}^{2}}{P_{b}^{2}} \\
& C_{5}=\frac{1}{z_{\text {avg }} T_{\text {avg }}} \\
& C_{6}=\frac{2 g * M *\left(H_{2}-H_{1}\right)}{z_{\text {avg }}^{2} R_{u} T_{\text {avg }}^{2}} \\
& C_{7}=\frac{1}{4} C_{6}
\end{aligned}
$$

Equ. 4.14 can be solved for P_{1} or P_{2} using the solution to the quadratic equation.

$$
\left[C_{4} C_{5} P_{1}^{2}-C_{4} C_{5} P_{2}^{2}-C_{4} C_{7} P_{1}^{2}-C_{4} C_{7} P_{2}^{2}-2 C_{4} C_{7} P_{1} P_{2}\right]-Q^{2}=0
$$

Solving for $\mathrm{P}_{1},\left(\mathrm{P}_{1}>\mathrm{P}_{2}\right)$

$$
P_{1}^{2}\left(C_{4} C_{5}-C_{4} C_{7}\right)+P_{1}\left(-2 C_{4} C_{7} P_{2}\right)+\left(-C_{4} C_{5} P_{2}^{2}-C_{4} C_{7} P_{2}^{2}-Q^{2}\right)=0
$$

Equ. 4.15

$$
P_{1}[\mathrm{psf}]=\frac{2 C_{4} C_{7} P_{2} \pm \sqrt{\left(2 C_{4} C_{7} P_{2}\right)^{2}-4\left(C_{4} C_{5}-C_{4} C_{7}\right)\left(-C_{4} C_{5} P_{2}^{2}-C_{4} C_{7} P_{2}^{2}-Q^{2}\right)}}{2\left(C_{4} C_{5}-C_{4} C_{7}\right)}
$$

Solving for $\mathrm{P}_{2},\left(\mathrm{P}_{2}<\mathrm{P}_{1}\right)$

$$
P_{2}^{2}\left(-C_{4} C_{5}-C_{4} C_{7}\right)+P_{2}\left(-2 C_{4} C_{7} P_{1}\right)+\left(C_{4} C_{5} P_{1}^{2}-C_{4} C_{7} P_{1}^{2}-Q^{2}\right)=0
$$

Equ. 4.16

$$
P_{2}[\mathrm{psf}]=\frac{2 C_{4} C_{7} P_{1} \pm \sqrt{\left(2 C_{4} C_{7} P_{1}\right)^{2}-4\left(-C_{4} C_{5}-C_{4} C_{7}\right)\left(C_{4} C_{5} P_{1}^{2}-C_{4} C_{7} P_{1}^{2}-Q^{2}\right)}}{2\left(-C_{4} C_{5}-C_{4} C_{7}\right)}
$$

Useful Conversions

1 slug $=32.17405 \mathrm{lb}_{\mathrm{m}}=1 \mathrm{lb}_{\mathrm{f}} * \mathrm{~s}^{2} / \mathrm{ft}$
$1 \mathrm{lb}_{\mathrm{m}}=1$ slug / 32.17405
$1 \mathrm{lb}_{\mathrm{f}}=1$ slug $* \mathrm{ft} / \mathrm{s}^{2}=32.17405 \mathrm{ft} * \mathrm{lb}_{\mathrm{m}} / \mathrm{s}^{2}$

5.0 Estimating the Friction Factor, f

All gas flow equations are derived from the General Flow Equation. The differences in flow equations comes from the assumptions used to reduce the General Flow Equation and the estimate used for the Darcy friction factor, f. The iterative process using the Colebrook-White Equation typically give the best results for estimating the transmission factor (Ref. $2 \& 3$). This method takes in to account the relative roughness of the pipe and the Reynolds number. Table 5.1 lists many methods for estimating the friction factor and the limits for their applicability. Figure 5.1 graphically shows how the friction factor estimate varies over a range of Reynolds numbers for a few of the methods listed in Table 5.1. The gas calculator presents results based on using the following transmission factors:

- Colebrook-White (Modified)
- IGT Improved
- Chen
- Goudar-Sonnad (recommended by ref 3)
- Renouard (recommended by ref 10)

(ดPP|
 Pastics Pipe nsstitue Gas Pipeline Calculator

Figure 5.1 - Friction factor estimate variation over a range of Re values (Ref 10)

Table 5.1 - Approximations of the Colebrook-White Equation

Equation Name / Author	Ref.	Transmission Factor, $\mathrm{F} / \mathbf{2}=\mathbf{1} / f^{0.5}$						
Colebrook-White	1,8	$-2 \log _{10} \frac{2.51}{R e \sqrt{f}}$, turbulent flow in smooth pipes Initial estimate $=1.8 \log _{10} \frac{R e}{69}$	$\begin{aligned} & 4000 \text { to } \\ & \text { 1E8 } \end{aligned}$					1933
Colebrook-White	$\begin{aligned} & \hline 2,3,4, \\ & 5,19 \end{aligned}$	$-2 \log _{10}\left(\frac{2.51}{\operatorname{Re} \sqrt{f}}+\frac{\epsilon}{3.7}\right)$, turbulent flow	$\begin{aligned} & 4000 \text { to } \\ & \text { 1E8 } \end{aligned}$			0-0.05		
Colebrook-White	6	$1.74-2 \log _{10}\left(2 \in+\frac{18.7}{\operatorname{Re} \sqrt{f}}\right)$ smooth pipes, transition to turbulent flow						
Colebrook-White (Modified)	$\begin{aligned} & 5,8, \\ & 10 \end{aligned}$	$-2 \log _{10}\left[\left(\epsilon / 3.7+2.825 /\left(\operatorname{Re}^{*}{ }^{0.5}\right)\right]\right.$, where $-2 \log _{10}[\epsilon / 3.7]$, turbulent flow in rough pipes $-2 \log _{10}\left[2.825 /\left(\operatorname{Re}^{*} \mathrm{f}^{0.5}\right)\right]=$ turbulent flow in smooth pipes	$\begin{aligned} & 4000 \text { to } \\ & \text { 1E8 } \end{aligned}$			0-0.05	$\begin{aligned} & <250 \\ & \text { MMSCFD } \end{aligned}$	1939
Approximations of the Colebrook-White Equation								
AGA Fully Turbulent	8,10	-2Log 10 $^{\text {[} ~ / ~ 3.74] ~}$	>4000				$\begin{aligned} & \hline<250 \\ & \text { MMSCFD } \end{aligned}$	
AGA Partially Turbulent (Prandtl-von Karman)	10	$-2 \log _{10}\left[\left(2.825 /\left(\operatorname{Re}^{*}{ }^{00.5}\right)\right]\right.$	$\begin{aligned} & 2000 \text { to } \\ & 4000 \end{aligned}$					

PP|
 Pastics Pipe instutute Gas Pipeline Calculator

AGA Partially Turbulent	7	$4 \log _{10}\left[\left(\left(\operatorname{Re} *^{* 0.5}\right)\right]-0.6\right.$				
Achour	18	$\begin{aligned} & -2 * \log _{10}[\epsilon / 3.7+ \\ & \left.4.5 / \operatorname{Re}^{*} \log _{10}(\mathrm{Re} / 6.97)\right] \end{aligned}$	>1E4		$0-0.05$	2002
Altshul	$\begin{array}{\|l\|} \hline 2,3, \\ 18 \\ \hline \end{array}$	$\left[0.11 *(68 / \operatorname{Re}+\epsilon)^{0.25}\right]^{-0.5}$	$\begin{aligned} & \text { 4E3- } \\ & \text { 1E7 } \\ & \hline \end{aligned}$		0 to 0.01	1952
Avci \& Karagoz	3	$\begin{aligned} & 0.3953[\ln (\mathrm{Re})- \\ & \ln \left(1+0.01 \epsilon \operatorname{Re}\left(1+10 \epsilon^{0.5}\right)\right]^{1.2} \end{aligned}$				2009
Barr	3,18	$\begin{aligned} & -2 * \log _{10}[\epsilon / 3.7+ \\ & 4.518 * \log _{10}(\operatorname{Re} / 7) /\left(\operatorname{Re}^{*}(1+\right. \\ & \left.\left.\operatorname{Re}^{0.52} /\left(29 \epsilon^{0.7}\right)\right)\right] \\ & \hline \end{aligned}$	$\begin{aligned} & 2300 \\ & \text { to } 1 \mathrm{E} 8 \end{aligned}$		0 to 0.05	1981
Blasius	1	$2.331(\mathrm{Re})^{1 / 10}$	$>2 \mathrm{E} 4$			1913
Blasius	5	$1.7789 * \mathrm{Re}^{1 / 8}$	<1E5			
Brkic	18	$\begin{aligned} & -2 \log \left(10^{-0.4343 \beta}+\epsilon / 3.7\right) \text { where } \\ & \beta=\ln (1+0.458 \mathrm{Re})[1- \\ & (\ln (1+0.458 \mathrm{Re}) /(2+\ln (1+0.458 \mathrm{Re}))] \end{aligned}$		$\begin{aligned} & 4000 \text { to } \\ & \text { 1E8 } \end{aligned}$	$0-0.05$	2011
Buzzelli	3,18	$A-\left[\frac{A+2 \log (B / R e)}{1+(2.18 / B)}\right]$ where $\begin{aligned} & A=\frac{0.744 \ln (R e)-1.41}{1+1.32 \sqrt{\epsilon}}, B=\frac{\epsilon}{3.7} R e+ \\ & 2.51 A \end{aligned}$		$\begin{aligned} & 2300 \text { to } \\ & \text { 1E8 } \end{aligned}$	$0-0.05$	2008
Chen	$\begin{array}{\|l\|} \hline 2,3, \\ 18 \end{array}$	$\begin{aligned} & -2^{*} \log _{10}\left[\epsilon / 3.7065-5.0452 / \mathrm{Re}^{*}\right. \\ & \log _{10}\left(\epsilon^{1.1096} / 2.8257+\right. \\ & \left.\left.5.8506 / \mathrm{Re}^{0.8961}\right)\right] \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4E3 to } \\ & \text { 4E8 } \end{aligned}$		$1 \mathrm{E}-7 \text { to }$	1979
Chen	4,6	$\begin{aligned} & -4 * \log _{10}[\epsilon / 3.7065-5.0452 / \mathrm{Re} * \\ & \log _{10}\left(\epsilon^{1.1096} / 2.8257+\right. \\ & \left.\left.(7.149 / \operatorname{Re})^{0.8961}\right)\right] \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 4 \mathrm{E} 3 \text { to } \\ & 4 \mathrm{E} 8 \end{aligned}$			1979
Churchill	$\begin{aligned} & 2,3, \\ & 18 \end{aligned}$	$-2 * \log _{10}\left[\epsilon / 3.71+(7 / \mathrm{Re})^{0.9}\right]$				1973

Page $\mathbf{2 5}$ of $\mathbf{2 9}$

Plastics Pipe Institute

Gas Pipeline Calculator

Eck	3,18	$-2 * \log _{10}[\epsilon / 3.71+15 / \mathrm{Re}]$					1973
Fang	$\begin{aligned} & \hline 2,3,1 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.787 * \ln \left[0.234 \epsilon^{1.1007}-\right. \\ & \left.60.525 / \mathrm{Re}^{1.1105}+56.291 / \mathrm{Re}^{1.0712}\right] \end{aligned}$	$\begin{aligned} & 3000 \text { to } \\ & 1 \mathrm{E} 8 \\ & \hline \end{aligned}$			0-0.05	2011
Fritzsche	10	$3.3390 *\left(\mathrm{Re}^{*}\right)^{0.071}$					
Ghanbari-Farshad-Rieke	3,18	$\begin{aligned} & \left(-1.52 \log \left[(\epsilon / 7.21)^{1.042}+\right.\right. \\ & \left.\left.(2.731 / \operatorname{Re})^{0.9152}\right]\right)^{1.0845} \end{aligned}$	$\begin{aligned} & 2100- \\ & 1 \mathrm{E} 8 \end{aligned}$			0-0.05	2011
Goudar-Sonnad	$\begin{aligned} & \hline 3,18, \\ & 19 \end{aligned}$	$\begin{aligned} & 0.8686 * \ln \left[0.4587 * \operatorname{Re} /\left(\mathrm{C}^{\mathrm{C} /(\mathrm{C}+1)}\right],\right. \\ & \text { where } \mathrm{C}=0.124 * \mathrm{Re}^{*} \epsilon+ \\ & \ln (0.4587 * \mathrm{Re}) \\ & \hline \end{aligned}$	$\begin{aligned} & 4000 \\ & \text { to } 1 \mathrm{E} 8 \end{aligned}$			$\begin{aligned} & 1 \mathrm{E}-6- \\ & 0.05 \end{aligned}$	2006
Hagen-Poiseuille	1,6	$(\mathrm{Re} / 64)^{0.5}$	≤ 2100				1840
Haaland	$\begin{aligned} & \hline 2,3,5, \\ & 18 \end{aligned}$	$-1.8 * \log _{10}\left[(\epsilon / 3.7)^{1.11}+6.9 / \mathrm{Re}\right]$	$\begin{aligned} & \text { 4E3 to } \\ & 1 \mathrm{E} 8 \\ & \hline \end{aligned}$			1E-6-0.05	1983
IGT-Improved	4,10	$2.3095 * \mathrm{Re}^{0.1}$	$\begin{aligned} & 16,000 \\ & \text { to 3E6 } \end{aligned}$	$\begin{aligned} & <1 \\ & 2-20 \mathrm{psi} \\ & 20-100 \mathrm{psi} \end{aligned}$	$\begin{aligned} & \hline 3^{\prime \prime} \text { to } 30^{\prime \prime} \\ & 1.5^{\prime \prime} \text { to } 20^{\prime \prime} \\ & 0.75^{\prime \prime} \text { to } 12 \end{aligned}$		1960's
Jain	3	$-2 \log _{10}\left[\epsilon / 3.715+(6.943 / \mathrm{Re})^{0.9}\right]$	$\begin{aligned} & 5 \mathrm{E} 3 \text { to } \\ & 1 \mathrm{E} 8 \\ & \hline \end{aligned}$			4E-5-0.05	1976
Jain	2,6	$1.14-2 \log _{10}\left[\epsilon+21.25 / \mathrm{Re}^{0.9}\right]$	$\begin{aligned} & \text { 5E3 to } \\ & 1 \mathrm{E} 8 \end{aligned}$			4E-5-0.05	1976
Manadilli	$\begin{aligned} & \hline 2,3,1 \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & -2 * \log _{10}\left[\epsilon / 3.7+95 / \operatorname{Re}^{0.983}-\right. \\ & 96.82 / \mathrm{Re}] \end{aligned}$	$\begin{aligned} & 4000 \text { to } \\ & 1 \mathrm{E} 8 \end{aligned}$	$\begin{aligned} & 5200 \text { to } \\ & 1 \mathrm{E} 8 \end{aligned}$		0-0.5	1997
Moody	$\begin{aligned} & \hline 2,3,1 \\ & 8 \\ & \hline \end{aligned}$	$\left[\begin{array}{l} {\left[0.0055 *\left[1+(2 \mathrm{E} 4 * \epsilon+1 \mathrm{E} 6 / \mathrm{Re})^{1 / 3}\right]\right.} \\]^{-1 / 2} \end{array}\right.$	$\begin{aligned} & 4000 \text { to } \\ & 5 \mathrm{E} 8 \\ & \hline \end{aligned}$			0-0.01	1947
Morrison	1	$\begin{aligned} & {\left[\left[0.0076 *(3170 / \mathrm{Re})^{0.165} /(1+\right.\right.} \\ & \left.\left.(3170 / \mathrm{Re})^{7.0}\right]+16 / \mathrm{Re}\right]^{-1 / 2} \\ & \hline \end{aligned}$	≤ 1 E6				2013
Mueller - High	10	$1.675 * \mathrm{Re}^{0.13}$	$\begin{aligned} & 2000 \text { to } \\ & 1.25 \mathrm{E} 5 \end{aligned}$	$\begin{aligned} & \hline<1 \\ & 2-20 \mathrm{psi} \\ & 20-100 \mathrm{psi} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 / 8^{\prime \prime} \text { to } 6^{\prime \prime} \\ & 3 / 8^{\prime \prime} \text { to } 2^{\prime \prime} \\ & 3 / 8^{\prime \prime} \text { to } 1.5^{\prime \prime} \end{aligned}$		
Nikuradse	4	1.14-2 $\log _{10}[\epsilon]$	>4000				

PPI
 Patusperensatue Gas Pipeline Calculator

Nikuradse	6	1.74-2 $\log _{10}[2 \mathrm{E}]$					
Nikuradse	11	$3.476-4 \log _{10}[\mathrm{E} / 3.7]$					
Oliphant	7	$1+\mathrm{D}^{0.5} / 30$					
Panhandle A	$\begin{aligned} & 4,6, \\ & 10 \end{aligned}$	3.43 * $\mathrm{Re}^{0.0735}$	$\begin{aligned} & 1.3 \mathrm{E} 6 \\ & \text { to } \\ & 7.5 \mathrm{E} 7 \end{aligned}$	$\begin{aligned} & 800 \text { to } \\ & \text { 1500psi } \end{aligned}$	12 " to 60 "		1940's
Panhandle B (Modified)	$\begin{aligned} & 4,6, \\ & 10 \end{aligned}$	8.165*(Re) ${ }^{0.01961}$	$\begin{aligned} & \text { 4E6 to } \\ & \text { 40E6 } \end{aligned}$	> 1000psi	D $\geq 36{ }^{\prime \prime}$		1956
Panhandle B	8	16.7E*(Q*SG/D) ${ }^{0.01961}$					
Papaevangelou	3	$\begin{aligned} & 0.2479-9.47 \mathrm{E}-5(7-\log (\mathrm{Re}))^{4} / \\ & \left(\log \left(\epsilon / 3.615+7.366 / \mathrm{Re}^{0.9142}\right)\right) \\ & \hline \end{aligned}$					2010
Prandtl	1, 4	$2 \log _{10}\left(\operatorname{Re}^{*} f^{0.5}\right)-0.8$	$\begin{aligned} & 4000 \text { to } \\ & \text { 1E6 } \\ & \hline \end{aligned}$				1935
Prandtl - von Karman	10,18	$-2 * \log _{10}\left(2.825 /\left(\operatorname{Re}^{*} f^{0.5}\right)\right.$, smooth pipe					
Prandtl - von Karman Nikuradse	2	$2 * \log _{10}\left(\operatorname{Re}^{*} f^{0.5}\right)-0.08$, smooth pipe $1.14-2 * \log 10(\epsilon)$, rough pipe	$\begin{aligned} & 4000 \text { to } \\ & \text { 1E6 } \end{aligned}$				
Renouard - Low	10	$0.21 * \mathrm{Re}^{-0.2}$	<4000				
Renouard - Medium	10	$2.4112 * \mathrm{Re}^{0.09}$	$\begin{aligned} & 4000 \text { to } \\ & \text { 4E6 } \\ & \hline \end{aligned}$				1952
Renouard - High	10	$2.1822 * \mathrm{Re}^{0.1}$	> 4E6				
Round	$\begin{aligned} & 2,3, \\ & 18 \end{aligned}$	$-1.8 * \log _{10}[\operatorname{Re} /(0.135 \epsilon \operatorname{Re}+6.5)]$	$\begin{aligned} & 4000 \text { to } \\ & \text { 4E8 } \end{aligned}$			0-0.05	1980
Shacham	3, 18	```-2*Log}\mp@subsup{}{10}{[\epsilon/3.7 - 5.02/Re**)```	$\begin{aligned} & \hline 4000 \\ & \text { to 4E8 } \end{aligned}$			$0-0.05$	1980
Spitzglass -High	4	$[88.5 /(1+3.6 / \mathrm{D}+0.03 * \mathrm{D})]^{0.5}$		$\begin{aligned} & \text { 3psi to } \\ & \text { 100psi } \\ & \hline \end{aligned}$	$\mathrm{D} \leq 10{ }^{\prime \prime}$		1912
Spitzglass -Medium	10	$\begin{aligned} & {[88.5 /(1+0.09144 / \mathrm{D}+} \\ & 1.1811 * \mathrm{D})]^{0.5} \\ & \hline \end{aligned}$		1 psi to 3psi			

Plastics Pipe Institute Gas Pipeline Calculator

Spitzglass -Low	4	$[88.5 /(1+3.6 / \mathrm{D}+0.03 * \mathrm{D})]^{0.5}$		< 1psi	D $\geq 16{ }^{\prime \prime}$			1912
Swamee, Jain	$\begin{aligned} & 2,3,5, \\ & 18 \end{aligned}$	$-2 * \log _{10}\left(\epsilon / 3.7+5.74 / \mathrm{Re}^{0.9}\right)$	$\begin{aligned} & 5 \mathrm{E} 3 \text { to } \\ & \text { 1E7 } \\ & \hline \end{aligned}$			1E-6-0.05		1976
Weymouth	$\begin{aligned} & 4,8, \\ & 10 \end{aligned}$	$5.59 * \mathrm{D}^{1 / 6}$	>4000	$\begin{aligned} & 100 \text { to } \\ & 1000 \mathrm{psi} \end{aligned}$	D ≤ 12 "		$\begin{aligned} & \mathrm{L}<20 \\ & \text { miles } \end{aligned}$	1912
White	10	$(1.02)^{-0.5} *\left(\log _{10} \mathrm{Re}\right)^{1.25}$						1979
Wood	2,18	$\begin{aligned} & {\left[0.53 \epsilon+0.094 \epsilon^{0.225}+88 \epsilon^{0.44} * \operatorname{Re}^{(-6} \epsilon^{\left(-62 \epsilon^{\wedge} 0.134\right)}\right]^{-0.5}} \end{aligned}$	$\begin{aligned} & \text { 4E3 - } \\ & 5 \mathrm{E} 7 \end{aligned}$			$\begin{array}{\|l} \hline 0.00001- \\ 0.04 \\ \hline \end{array}$		1966
Von Karman	8	$-2 \log _{10}[\epsilon / 3.7]$ for rough pipe $2 \mathrm{D}_{f} * \log _{10}\left[\mathrm{Re} /\left(1.412 * \mathrm{~F}_{\mathrm{t}}\right)\right]$ for smooth pipe						
von Karman and Prandtl	4	$2 \log \left(\operatorname{Re}^{*} f^{\prime / 2}\right)-0.8$						
Zigrang, Sylvester	$\begin{aligned} & 2,3,1 \\ & 8 \end{aligned}$	$\begin{aligned} & -2 * \log _{10}\left[\epsilon / 3.7-5.02 / \operatorname{Re} * \log _{10}(\epsilon\right. \\ & \left.-5.02 / \operatorname{Re} * \log _{10}(\epsilon / 3.7+13 / \operatorname{Re})\right] \end{aligned}$	$\begin{aligned} & 4 \mathrm{E} 3 \text { to } \\ & 1 \mathrm{E} 8 \end{aligned}$			4E-5-0.05		1982

REFERENCES

1. Assefa, K. M. \& Kaushal, D. R., Department of Civil Engineering, Indian Institute of Technology Delhi; A comparative study of friction factor correlations for high concentrate slurry flow in pipes, Journal of Hydrol. Hydromech., Vol 63; 2015.
2. Genic', S. \& Arandjelovic', I. (Faculty of Mechanical Engineering, University of Belgrade); 2011. A Review of Explicit Approximations of Colebrook's Equation, FME Trans 39, 67-71.
3. Asker, M., Turgut, O.E., \& Coban, M.T. (Dept. of Mechanical Engineering, Ege University, Turkey); 2013. A review of non-iterative friction factor correlations for the calculation of pressure drop in pipes.
4. Schroeder, D.W. Jr. (Stoner Associates, Inc.); 2001. A Tutorial on Pipe Flow Equations.
5. Kiijarvi, Jukka (Lunowa Fluid Mechanic); 2011. Darcy Friction Factor Formulae in Turbulent Pipe Flow.
6. Olatunde, A.O.; Adeosun, T.A.; Usman, M.A., et al; 2012. Direct Calculation of Unsteady-State Weymouth Equations for Gas Volumetric Flow Rate with Different Friction Factors in Horizontal and Inclined Pipes, Scientific Research Engineering Journal.
7. Bean, B.B.; 2016. GasCalc 5.0 Calculation Reference Manual, Rev 10.
8. Hashem, A.A. (Professor of Petroleum Engineering, Mining, Petroleum \& Metallurgical Engineering Dept., Cairo University). Part2: Steady-State Flow of Gas through Pipes from PE607: Oil \& Gas Pipeline Design, Maintenance \& Repair, course.
9. HajiAliAkbari, N. \& Behbahani, R.M. (The Petroleum University of Technology, Iran); 2014. Tuning of the Pressure Equation in the Natural Gas Transmission Network; International Journal of Computer Applications Vol 85-No 1.
10. Coelho, P.M. \& Pinho, C.P.; 2007. Considerations About Equations for Steady State Flow in Natural Gas Pipelines; Journal of The Brazilian Society of Mechanical Sciences and Engineering Vol. XXIX, No. 3.
11. Smith, R.V.; 1990. Practical Natural Gas Engineering, 2nd Edition by Penn Well Publishing Co.
12. Kennedy, John L.; 1993. Oil and Gas Pipeline Fundamentals, 2nd Edition by Penn Well Publishing Co.
13. Cimbala, J.M. (Penn State University); 2014. The Ideal Gas Constant.
14. Bengtson, Harlan H.; 2017. Natural Gas Pipeline Flow Calculations, independently published.
15. Hall, K.R. and Yarborough, L; 1973. A New Equation of State for Z-Factor Calculations, Oil \& Gas J. 71 (25): 82.
16. Lee, A., Gonzalez, M., Eakin, B.; 1966. The Viscosity of Natural Gases, SPE Paper 1340, Journal of Petroleum Technology, vol. 18, p. 997-1000.
17. McAllister, E.E.; 2005. Pipeline Rules of Thumb Handbook, $\mathbf{6}^{\text {th }}$ Edition, Gulf Professional Publishing.
18. Zeghadnia, L., Robert, J.L., Achour, B.; 2019. Explicit solutions for turbulent flow friction factor: A review, assessment and approaches classification, Ain Shams Engineering Journal 10, 243-252.
19. Brkić, D., 2011. Review of explicit approximations to the Colebrook relation for flow friction, Journal of Petroleum Science and Engineering, Elsevier, 77 (1), pp.34-48.
20. Menon, E.S., 2005. Gas Pipeline Hydraulics, Taylor \& Francis Group LLC, CRC Press.
