

From Underground to the Forefront of Innovation and Sustainability

Repair of In-Service HDPE Water Distribution Pipe

Todd Grafenauer, P.E.

Mohammad Najafi, Ph.D., P.E.

Tom Sangster, P.E.

Lawrence M. Slavin, Ph.D.

Outside Plant Consulting Services, Inc.

Survey - Team Members

Mohammad Najafi (Task A – United States)

Center for Underground Infrastructure Research and Education University of Texas at Arlington

Tom Sangster (Task B – Europe)

Downley Consultants (Geneva, Switzerland)

Todd Grafenauer (Task C – Manufacturers)

Murphy Pipeline Contractors, Inc.

Lawrence Slavin (Task D – Results & Conclusions)

Outside Plant Consulting Services, Inc.

Task A (USA Survey)

Large Number (95) Utilities Contacted*

- Relative frequency of repairs (HDPE vs. other pipe types)
- Description of damage or leakage experience
- Circumstances of repairs
- Type of repair couplings and fittings normally stocked by utility
- Repair methods actually employed
- Repair time
- Repair cost

^{*} Primarily water (but also some gas) utilities.

Task A (USA Survey)

Large Number Utilities Contacted (cont'd)

- Initial vs. permanent repairs and types (mechanical vs. fusion)
- For fusion repair, methods used to create clean dry environment
- Long-term evaluation/reliability
- Training of maintenance crews
- Additional required support from manufacturers.
- "Best" type of repair (utilities' experiences)

Task B (Europe Survey)

Relatively Few (19) Utilities Contacted

- Similar objectives as US Survey
- Questionnaires completed by 9 water utilities:
 - UK 6
 - Germany 2 (questionnaire translated to German)
 - Belgium 1
- Responses received from 9
- All are water utilities and big users of PE pipe
- Interviews held with 5 in UK, Germany and Belgium

Task C (Manufacturers Survey)

Large Number (36) Mfrs/Distrs Contacted

- Manufacturers' products for field repair of HDPE pipe
- Length of time available
- Sales volume (if provided)
- Customer support and training
- Reported errors commonly made by users
- Feedback regarding field performance of products (as available; see Task A)
- Recommendations or suggestions improving reliability of repairs
- Manufacturers' method of verifying product reliability

USA Respondents

Europe Respondents

Fusion vs. Mechanical

Fusion (heat or electrofusion)

- Ideal for new installations
 - Essentially seamless
 - Leak proof
 - Retains full strength (e.g., for trenchless pulling)
- Not necessarily optimum for in-service field repairs
 - Requires clean, dry conditions
 - Requires skill, judgment for such applications

Fusion vs. Mechanical

Mechanical

- May be used for new installations, if convenient
 - Fittings may be installed in pit
 - Minimal training and equipment
 - Improper installation typically evident upon pressurization
- Most appropriate for in-service field repairs
 - Forgiving to non-ideal field conditions

Failure Causes (USA)

Failure Causes (Europe)

Fusion – Errors/Failures

Mechanical – Errors/Failures

Main Conclusions

- Fusion procedures difficult to perform for typical field repairs of leaking water pipes
 - Requires clean, dry environment
 - Skill, judgment

BUT

 Mechanical connections/repairs can represent efficient, practical permanent repairs

Localized Damage (full-circle band clamps)

Extensive Damage (replace section)

- Circumferentially bolted mechanical coupling
- Radially bolted type mechanical restraint with MJ gasket
- Compression fittings (various types), using internal stiffeners, with full axial restraint capability, as available (may depend on pipe size)

^{*} Typically require inserts.

Circumferentially bolted

(Courtesy Victaulic®)

(Courtesy Robar/ARPOL®)

Radially bolted (fitting, ...)

(Courtesy Star® Pipe Products)

Radially bolted (dissimilar pipe materials)

(Courtesy EBAA Iron, Inc.)

Mechanical Repair Procedure

Repair Assembly Using Spool Piece and Sleeves

Typical Application (Fusion or Mechanical)

Conclusions

- 25% water distribution in Europe is of HDPE -- order of magnitude greater than that in the USA
- Fusion difficult and sometimes impractical for field repair of leaking water lines
- Mechanical solutions, properly installed, represent permanent repairs for water distribution applications
- Most mechanical repair fittings for HDPE pipe will also repair DIP and PVC pipe; converse not true
- Most water applications use DIPS sizes vs. some HDPE fittings with only IPS sizes currently available

Conclusions (cont'd)

- When pipe section replacement not necessary (local damage): recommend full circle band clamps
- When pipe section replacement necessary (more extensive damage):
 - Radially bolted
 - Circumferentially bolted
 - Compression fittings (may depend on pipe size)
- Fusion methods require proper (extensive) training, including judgment when not to apply

THANK YOU!

(Please provide feedback on results of applications)

