Municipal Advisory Board
Established May 1, 2008 at the University of Texas, Arlington

MAB Basic HDPE Repair Options
(MAB-4-2018)

First edition approved at MAB 22 hosted by San Antonio Water System, TX
©Plastics Pipe Institute, 2018, 2019
2nd Printing, September 2019
ACKNOWLEDGMENTS

The Municipal Advisory Board would like to acknowledge the excellent contributions of the MAB-4 Basic HDPE Repair Options Task Group for developing and leading this project.

Todd Grafenauer Murphy Pipelines, WI
Andrew Schipper, PE City of Ft. Wayne, IN
Greg Scoby, PE City of Palo Alto, CA (past) and Crossbore Consultants, CA

MUNICIPAL ADVISORY BOARD MEMBERS

UTILITIES
Luis Aguiar Miami–Dade Water & Sewer (past), Hazen & Sawyer, FL, Co-Chair
Jessie Allen, PE Arlington Water Utilities, TX
Alan Ambler, PE City of Casselberry, FL (past), AM Trenchless, FL
Marisa Boyce, PE* East Bay Municipal Utility District, CA
John Fishburne, PE Charlotte Water (past), Freese & Nichols, NC
David Freireich, PE City of Round Rock, TX
Todd Jorgenson Austin Utilities, Austin, MN
Holly Link* Colorado Springs Utilities, CO
Gordon Mahan SAWS, San Antonio, TX
Ryan McKaskle, PE* City of Tulsa, OK
Greg Scoby, PE City of Palo Alto (past), Crossbore Consultants, CA, Utility Chair
Eric Shaffer, PE* City of Duluth, MN
Dave Stewart* City of Lago Vista, TX
Matthew Wirtz, PE City of Ft Wayne, IN

UNIVERSITIES
Dr. Alan Atalah, PE Bowling Green State University, OH
Dr. Tom Iseley, PE TTC, Louisiana Tech University, LA
Dr. Mark Knight, PEng CATT, University of Waterloo, ON
Dr. Mo Najafi, PE CUIRE, University of Texas at Arlington, R&D Chair

CONTRACTORS
Todd Grafenauer Murphy Pipelines, WI
David Mancini David Mancini & Sons, FL
Kevin Miller Miller Pipeline Co., IN, Education Chair

CONSULTANTS
Joe Castronovo, PE AECOM (ret.), ASCE UESI, GA
Steven Kramer, PE COWI North America, Inc., NJ
Ernest Lever Infrastructure Sector, Gas Technology Institute, IL

PPI
Camille Rubeiz, PE Municipal & Industrial Division (M&I), TX, Co-Chair

FORMER MEMBERS
Dr. Sam Ariaratnam, PE Arizona State University, AZ
Mike Heitmann Garney Construction, MO
Milton Keys Indy Water/Veolia, IN
Matthew Klein Veolia/ Citizens Energy, IN
Ed Lambing, PE San Jose Water Co., CA
Jonathan Leung, PE Los Angeles Dept. of Water and Power, CA
George McGuire Ditch Witch, OK
Dr. Ken Oliphant, PEng JANA, ON
Rafael Ortega, PE LAN, TX
Collins Ortega TT Technologies, CA
Fred Ostler, PE Joint Powers Water Board, WY
Chad Owens, PE City Utilities, MO
Dr. Larry Slavin OPUS, NJ
Dan Smolik Garney Construction, FL
Serge Terentieff, PE EBMUD, CA

* Denotes others who contributed to development of this document which includes the following non-MAB members:

Ron Collins JCM Industries, TX
Angelo DuPont City of Arlington, TX
Robert Item, PE City of Palo Alto, CA
Jim Johnston McElroy Manufacturing, OK
Robert Justus City of Palo Alto, CA
Rick Van Kesteren WAGA, NL
Rick Ponder Integrity Fusion, GA
Jeff Wright GF-Central Plastics, OK
The MAB-4 Basic HDPE Repair Options document was developed by the Municipal Advisory Board (MAB) and published with the help of the members of the Plastics Pipe Institute, Inc. (PPI).

The MAB-4 Basic HDPE Repair Options is intended as a guide for engineers, users, contractors, code officials, and other interested parties for use in the repair of high density polyethylene (HDPE) pressure water piping systems. The local utility or engineer may need to modify the document to adapt to local conditions, operations, and practices.

The MAB-4 Basic HDPE Repair Options were prepared by MAB members and associates as a service to the water industry. The information in this document is offered in good faith and believed to be accurate at the time of its preparation, but is offered “as is” without express or implied warranties, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Any reference to a specific manufacturer’s product is merely illustrative, and not intended as an endorsement of that product. Reference to or testing of a proprietary product should not be construed as an endorsement by the MAB or PPI, which do not endorse the proprietary products or processes of any manufacturer. Users are advised to consult the manufacturer for more detailed information about the specific manufacturer’s products. The information in this document is offered for consideration by industry members in fulfilling their own compliance responsibilities. MAB and the PPI assume no responsibility for compliance with applicable laws and regulations.

The MAB serves as an independent, non-commercial adviser to the Municipal & Industrial (M & I) Division of the PPI. Once adopted, MAB will consider revising this document from time to time, in response to comments and suggestions from users. Please send suggestions of improvements to Camille George Rubeiz, PE, F.ASCE, at crubeiz@plasticpipe.org.

RECOMMENDATIONS

1. If you are able to eliminate water through the pipe, then fusion should be the first choice of repair.
2. Squeeze off tools can create dry conditions for fusion.
3. All mechanical couplings should include pull out resistance/restraint or be used with external restraint clamps when using non-restraint mechanical couplings.
4. Internal stiffeners should be used for all mechanical couplings.
5. Corrosion protection should be provided for all underground metallic fittings.
6. Fabricated fittings should always be at least one SDR thicker than pipe and have the same Pressure Rating as the pipeline.
7. Illustrations for repair with fabricated fittings are appropriate for molded fittings.
8. For mechanical connections, contact the fitting manufacturer to verify that these connections are designed to work specifically with HDPE.
Leak Discovered on HDPE Pipe

Determine Leak Type

- **Puncture one pipe wall**
 - Size of Hole ≤ 1"
 - See Fig. 1, 2, 3
 - Size of Hole > 1"
 - See Fig. 4

- **Puncture both pipe walls**
 - Remove damaged section and install new pipe with two Electrofusion (EF) Couplings

- **Severed Main**
 - Mechanical Fitting
 - Remove fitting and replace with appropriate fitting
 - See Fig. 4, 5, 7
 - Mechanical Saddle
 - Remove saddle and replace with EF Saddle or replace pipe segment with new section and 2 EF couplings
 - See Fig. 3 or 5
 - Butt Fusion
 - Remove pipe segment with butt fusion and install new segment with 2 EF couplings
 - See Fig. 4
 - Electrofusion Coupling
 - Remove pipe segment with EF coupling and install new segment with 2 EF couplings
 - See Fig. 4
 - Electrofusion Saddle
 - Reheat EF saddle, remove and install new EF saddle or remove pipe section containing saddle
 - See Fig. 5
 - HDPE Line Fitting (Tee, Ell, Cross, Valve) Molded or Fabricated
 - Remove leaking fitting and install new fitting with 2, 3 or 4 EF couplings
 - See Fig. 6, 8, 9, 10
 - Pull out Mechanical Joint (MJ)
 - Cut out appropriate length of existing pipe to fit new MJ adapter, use EF coupling
 - See Fig. 7
 - Service Line (≤ 3"
 - Repair or replace service line
 - See Fig. 11, 12, 13

Service Line (≤ 3"

Repair or replace service line

See Fig. 11, 12, 13

Pull out Mechanical Joint (MJ)

Cut out appropriate length of existing pipe to fit new MJ adapter, use EF coupling

See Fig. 7

HDPE Line Fitting (Tee, Ell, Cross, Valve) Molded or Fabricated

Remove leaking fitting and install new fitting with 2, 3 or 4 EF couplings

See Fig. 6, 8, 9, 10

Electrofusion Saddle

Reheat EF saddle, remove and install new EF saddle or remove pipe section containing saddle

See Fig. 5

Electrofusion Coupling

Remove pipe segment with EF coupling and install new segment with 2 EF couplings

See Fig. 4

Butt Fusion

Remove pipe segment with butt fusion and install new segment with 2 EF couplings

See Fig. 4

Mechanical Saddle

Remove saddle and replace with EF Saddle or replace pipe segment with new section and 2 EF couplings

See Fig. 3 or 5

Mechanical Fitting

Remove fitting and replace with appropriate fitting

See Fig. 4, 5, 7

Severed Main

Mechanical Fitting

Remove fitting and replace with appropriate fitting

See Fig. 4, 5, 7

Puncture both pipe walls

Remove damaged section and install new pipe with two Electrofusion (EF) Couplings

See Fig. 4

Puncture one pipe wall

Size of Hole ≤ 1"

See Fig. 1, 2, 3

Size of Hole > 1"

See Fig. 4

Determine Leak Type
Fig. 1 Repair Patch
Fig. 2 Branch Saddle w/cap
Fig. 3 Tapping Tee (requires outlet cap)

Fig. 4 Pipe Section Replacement with Two Electrofusion Couplings
Fig. 5 Pipe Section Replacement with Tapping Tee

Fig. 6 Section Replacement with Molded Tee
Fig. 7 Mechanical Joint (MJ) Adapter w/Install Kit

Fig. 8 Fabricated Elbow with Two EF Couplings
Fig. 9 Fabricated Tee with Three EF Couplings

Fig. 10 Fabricated Cross with 4 EF Couplings
Fig. 11 Service line EF Coupling

Fig. 12 Service Butt Fusion
Fig. 13 Service Line Socket Fusion
ELECTROFUSION REPAIR OF LEAKING SADDLE FUSIONS:

Leaks due to suspect electrofusion saddle joints can be repaired by removing the leaking connection and replacing the saddle. A weak or leaking fusion is likely due to contamination in the fusion zone or the lack of pipe preparation at the time of initial installation. In such cases, the saddle can be removed by re-energizing the heating coil to the point that the PE material becomes melted and softened. Once re-melted, the old saddle can be pulled from the pipe and a new saddle can be installed in the same location.

PROCEDURE:

Excavate to expose the suspect saddle and depressurize the system. Disconnect the service line and clean the pipe surfaces immediately surrounding the suspect saddle.

If the saddle has a "permanent" clamping device, such as a bolt-on strap or plastic underpart, the clamp must be removed. Connect the electrofusion control box to the suspect saddle and start the fusion cycle.
When the fusion cycle is complete, immediately pull the saddle from the pipe. Wear gloves and use caution to avoid burns from hot plastic or wires. Small tapping saddles can normally be removed by hand, but if necessary a suitable rubber mallet may be used to strike the fitting.

Inspect the pipe surface for damage. Remnants of PE material from the saddle will likely remain on the pipe surface and can be removed with a rasp to re-shape the pipe curvature. Once the remnants are removed, the pipe can be prepared for fusion by peeling/scraping using approved procedures. The tap hole may require that the peeler blade be manipulated to allow it to pass over the hole in the pipe as it revolves over that area.

Place the new fitting over the tap hole carefully to ensure that the hole is inside of the fusion zone boundary. A mandrel or guide may be inserted into the tap hole to aid in aligning the replacement fitting over the hole. Clamp the fitting in place and fuse per normal procedures.

Allow the fitting to cool per normal procedures prior to removing the clamp, reconnecting the service line, and returning to service.
Leak Discovered on HDPE Pipe

Determine Leak Type

- Puncture one pipe wall
 - Size of Hole ≤ 1"
 - See Fig. 14, 15, 16, 17, 26
 - Size of Hole > 1"
 - See Fig. 18

- Puncture both pipe walls
- Severed Main
- Mechanical Fitting
- Mechanical Saddle
- Butt Fusion
- Electrofusion (EF) Coupling
- Electrofusion (EF) Saddle
- Line Fitting (Tee, Ell, Cross, Valves)
- Pull-out Mechanical Joint (MJ)
- Service Line (≤ 3")

Remove damaged section and reinstall new pipe with two mechanical Pull Out Restraint couplings and internal stiffeners

Replace fitting

Remove saddle and replace

Remove section of pipe containing butt fusion and replace with new pipe section and 2 mechanical Pull Out Resistant couplings or encapsulate

Remove pipe segment with EF Coupling, install new pipe segment with 2 mechanical Pull Out Resistant couplings

Remove pipe segment containing EF saddle, install new pipe segment with 2 mechanical Pull Out Resistant couplings, install service saddle on new pipe segment

Remove leaking fitting and install new fitting with 2, 3, or 4 mechanical Pull Out Resistant couplings

Cut out appropriate length of existing pipe to fit new MJ adapter

Repair or replace service line

See Fig. 16, 17, 19, 20, 21, 22
See Fig. 16, 17, 23, 25
See Fig. 18, 24, 26
See Fig. 18
See Fig. 18
See Fig. 22
See Fig. 30
MECHANICAL

Fig. 14 Band Clamp

Fig. 15 Band Clamp w Pull Out Restraint

Fig. 16 Repair Sleeve requires outlet plug

Fig. 17 Repair Sleeve Flanged Outlet

Fig. 18 HDPE Pipe Spool Replacement w Mechanical Couplings

Fig. 19 HDPE Flange

Fig. 20 Pull Out Resistant Coupling by Flange

Fig. 21 Fabricated Ell w Flanges

Fig. 22 Restrained Mechanical Joint

Fig. 23 “Mega-Lug” DIP Spool

Fig. 24 “Mega-Lug” Connection to DIP Ell

Fig. 25 Service Saddle

Fig. 26 Band Clamp capable of Encapsulating Butt Fusion

Fig. 27 Fabricated Tee

Fig. 28 Fabricated Ell

Fig. 29 Fabricated Cross

Fig. 30 Service Leak - Stab Type Coupling
FOR ADDITIONAL INFORMATION

- **ASTM F1041**: Standard Guide for Squeeze-Off of Polyolefin Gas Pressure Pipe and Tubing
- **ASTM F1055**: Standard Specification for Electrofusion Type Polyethylene Fittings for Outside Diameter Controlled Polyethylene and Crosslinked Polyethylene (PEX) Pipe and Tubing
- **ASTM F1563**: Standard Specification for Tools to Squeeze-off Polyethylene (PE) Gas Pipe or Tubing
- **ASTM F2620**: Standard Practice for Heat Fusion Joining of Polyethylene Pipe and Fittings
- **ASTM F3190**: Standard Practice for Heat Fusion Equipment (HFE) Operator Qualification on Polyethylene (PE) and Polyamide (PA) Pipe and Fittings

- **MAB-1**: MAB Generic Electrofusion Procedure for Field Joining of 12 Inch and Smaller Polyethylene (PE) Pipe
- **MAB-2**: MAB Generic Electrofusion Procedure for Field Joining of 14 Inch to 30 Inch Polyethylene (PE) Pipe
- **MAB-3**: MAB Model Specifications for PE 4710 Buried Potable Water Service, Distribution and Transmission Pipes and Fittings
- **MAB-4**: MAB Basic HDPE Repair Options